
13

2

SCHMOOZING
WITH THE IDEAS

2.1. OVERVIEW

The major ideas of this book and how they relate to one another are introduced
in this chapter. Some of the words and phrases which will be frequently encoun-
tered are explained and their contexts clarified. This chapter may be viewed as
an informal and readable glossary of the themes with which we will be mainly
concerned going forward.

2.2. IDEAS AND THEIR RELATIONS

Every book is a book of ideas. We may use facts, figures, and opinions to
contradict or corroborate, but ultimately we are trying to establish ideas. Ideas
in isolation are exciting, but really exciting things begin to happen when ideas
relate to one another. Each of us has our own “eureka” moments, when hitherto
disparate notions click together in congress. Books enrich us by uncovering
some of this clicking together and somehow convincing us that relating ideas
is not such an esoteric game after all. Some reflection and discipline can get
us there, which they surely can.

I sometimes think the very attitude toward books has changed with the
popularity of the Web and the ubiquity of information it has brought with it.
We rely less and less on books for our facts; the onus of books has shifted to



14 Metrics-Driven Enterprise Software Development

presenting new ideas or at least relating existing ideas in novel or insightful
ways.

This chapter is kind of an idea map for this book. Here you will be intro-
duced to some of the keynote ideas you will need to live with from now on.
Certain words and phrases will recur in this book, and this chapter will ensure
we are all on the same page about their meanings and insinuations. Usually, a
glossary does something like that, but it comes at the end of a book. As I am
too lazy to flip back and forth, I usually find myself assuming meanings of
words and phrases and reading on, only to find later that the author meant very
differently. The reverse is also true at times; two ideas may be very closely
related, but I suffer by assuming they are gulfs apart. Once I was reading the
requirement specifications for a large project, with a pressing need to make
sense of them. I frequently came across “users” and “merchants” and got con-
fused about their overlapping roles, only to realize later they were one and the
same business entity. Reading the glossary might have helped, or might not
have. Unfortunately, reading glossaries is no fun, just as reading dictionaries
is not, no matter how rich their content is. Therefore, I decided to front-end the
glossary idea and throw in some more verbiage, so that you have a fair idea
what the book is about before taking the plunge. Hopefully, acquaintance with
the themes up front will also help you absorb the narrative better. In the next
few sections, quick summaries of the ideas in this book are given, followed by
an effort to tie the threads together. Before that, however, let us savor two
instances where ideas separated by eons and disciplines have come together in
hair-raising harmony. These have always motivated me in ferreting around for
relations amongst ideas.

In 1936, Alan Turing (1936) published the paper “On Computable Numbers,
with an Application to the Entscheidungsproblem.” Turing introduced the notion
of what subsequently became known as the “Turing machine.” Turing was
exploring the ideas of computability, and his Turing machine was initially a
thought construct to illustrate his arguments. Bewitchingly simple in concep-
tion, a Turing machine is ultimately a symbol-manipulating device that consists
of an infinite-length tape, a head (which can move left or right) to read and write
symbols at box-like locations or cells on the tape, and a table of instructions.
It has since become manifest that a Turing machine is a complete model for
the basic operations of a computer. But this relation of ideas, from a pure
thought construct to the ubiquitous utility of computers as we know them today,
does not end the story of Turing machines. DNA — the genetic character
sequences regarded as the “blueprint” of life — has been married to the Turing
machine idea in recent research into the feasibility of DNA computers (Parker
2003; Johnson 2000). This serves as just one instance of how ideas are not
bound by provenance or politics.



Schmoozing with the Ideas 15

Turning to another area, a Bose-Einstein condensate is a phase of matter
formed by bosons (particles having integer spin, named after Bose) cooled to
temperatures very near to absolute zero (0 Kelvin or –273.15 degrees Celsius).
This was first predicted in 1925 through the work of Albert Einstein and
Satyendranath Bose. It was produced seventy years later by Eric Cornell and
Carl Wieman (1995) at the University of Colorado in Boulder. Tim Berners-
Lee (1999), while working as a software engineer at CERN, the European
Particle Physics Laboratory, in Geneva in the 1980s and early 1990s, conceived,
built, and refined the infrastructure of what was to become the World Wide
Web. The evolution and dynamics of the Web have been the subject of much
scrutiny, leading to the startling question: Could the Web or the Internet rep-
resent a gigantic Bose condensate (Barabasi 2001)? This is another example of
confluence of ideas from fields seemingly far apart.

These examples wake us to the gregariousness of ideas. Even if we cannot
see every thread in its full light (in all honesty, DNA and that condensate stuff
are far beyond me), we can appreciate the beauty and, more often than not, the
utility of the braid. The trope of a braid in describing the intermingling of ideas
has been powerfully exploited in the Pulitzer Prize–winning book Gödel, Escher,
Bach: An Eternal Golden Braid (Hofstadter 1979).

We will now look at the ideas in this book and their connectedness. After
this chapter, whenever reference is made to a word or phrase to which a sub-
section is devoted here (like enterprise software or metrics), we will implicitly
take it to have the meaning and context described below.

2.3. THEMES IN THIS BOOK

2.3.1. Enterprise Software Systems

Enterprise software systems are in a way the very raison d’être of the software
engineering profession. The phrase will be encountered many times as we go
deeper. How are enterprise software systems characterized?

Enterprise software systems usually support business processes; they need
to respond to changing user needs, they are bound by business and technological
constraints, and their soundness of design and implementation is of material
interest to different groups of stakeholders. To the above must be added another
feature which is becoming increasingly common to these systems: their scope
of operation ranges across a diverse spectrum of geography, nationality, and
culture. Fowler (2003), in his book Patterns of Enterprise Application Archi-
tecture, says enterprise applications are characterized by persistent data, con-
current data access, lots of “user interface screens,” needs to integrate with other
enterprise applications, needs to bridge conceptual dissonance between diverse



16 Metrics-Driven Enterprise Software Development

business processes, and complex business “illogic.” This is indeed a very in-
sightful list; the last two points in particular deserve some elaboration.

Conceptual dissonance is an apt expression for the great (and grave) diver-
sity of interests every enterprise system has to reasonably resolve. An enter-
prise application is usually a confluence of many business processes, none of
which is obligated to align with others. These nonaligned, often contradictory
interests are represented by different stakeholders, all of which stand to gain
or lose materially from the success or failure of the system. The gains and
losses, however, are very different in nature and extent. Building and main-
taining enterprise software systems is about balancing very many tugs and pulls
in very many directions to minimize losses and maximize gains for every
stakeholder.

Fowler also hits the nail on the head when he talks about the illogic of
business logic. Business logic is about business; it is not about logic. Logic is
an overloaded and overworked word, with such exalted trappings as reason and
syllogism. “Business rules” would be a better name for the instincts and credos
that drive any business. They have no reason to be logical or at least logical
in the sense software engineers (let alone logicians) understand the term. A
major challenge of enterprise software development is to capture the capricious-
ness of business rules in the formal structure of design and ultimately code.

Enterprise software systems usually do not involve complex mathematical
operations on data. It would be highly unlikely to have such a system solve
differential equations. Enterprise systems do, however, deal with very large
amounts of data and their storage, display, and simple manipulations. Another
aspect of enterprise software is that the users of such systems are different than
the developers, and these two groups are different from those who commission
the building of the software. This is of much consequence, as we have at least
three different groups associated with the systems, which speak three different
languages and yet must talk to one another.

Thus, in essence, enterprise software systems are software applications
which are commissioned to support business processes that involve diverse
groups of stakeholders. These systems may have a scope of development and
operation that ranges across a variety of technological, geographical, and cultural
domains.

We will next be more precise about the stakeholders.

2.3.2. Stakeholders

The Merriam-Webster Online Dictionary (2006) defines stake as “an interest
or share in an undertaking or enterprise.” (We will ignore other less germane



Schmoozing with the Ideas 17

definitions, one of which is the device for burning dissonant individuals in less
tolerant times.) And we have just been talking about enterprise software sys-
tems! Simply put, stakeholders are people whose material interests stand to be
affected, for better or for worse, by an undertaking with which they associate.
Material interest is different from such spiritual passions as the joy of discovery,
the love of humanity, or the bliss of doing something well. Very often, material
interest means immediate financial gain. Sometimes the connection may not be
that quick, but stakeholders are always in the game for some worldly gain.
There is a time in everyone’s life when worldly gains seem so gross. Then we
are able to take a more practical view of the world. This view is very important
for those in the business of developing enterprise software.

Some stakeholders are easy to identify. In an enterprise software project, the
customer (represented by a small group from the customer organization) is a
stakeholder; the customer is pumping money into the project in the hope it will
help bring back more money. The development team (a group of individuals
assigned to the project by the organization contracted by the customer) is a
stakeholder; if the project goes well, the team wins accolades, which may
eventually translate to enhanced responsibility and a higher pay packet for its
members. The users (for an online application, the multitude of individuals who
access it over the Web, to send, fetch, or review information) are stakeholders;
they are spending time and energy, and maybe money, on the application in the
hope of being adequately recompensed. These are just the overt stakeholders.
There may be other covert ones too. What about competing companies or
groups within the same company whose interests are not best met if the project
succeeds? What about other business entities curious to see how the system
impacts the users, so their strategies can be accordingly tuned? Thus, stakehold-
ers exist at many levels of visibility and invisibility. The development team, a
stakeholder itself, has the job of reconciling the stakes of all other stakeholders.
The overt ones are paramount, but it pays to keep an antenna open to the covert
ones too.

Let us now examine a special kind of stakeholder: the practitioners.

2.3.3. Practitioners

Practitioners may or may not preach, but they are professionally obligated to
practice. Engineering to a large extent is a practitioner’s profession. Things
must be made to actually work, even if they should work in theory. When we
talk about practitioners in this book, we will be referring to individuals or
groups who are expected to carry out the techniques described. Practitioners
certainly have a significant stake in the success of what they practice, so they



18 Metrics-Driven Enterprise Software Development

are stakeholders too. However, it was imperative to give them another, more
specific name, as this book is mainly practice oriented. Whatever idea is put
forward, if it is worth its salt, should help practitioners somewhere do their jobs
better.

So far we have dwelled upon the system and its players. Let us now limn
another key word in the title of this book: metrics.

2.3.4. Measure-Measurement-Metrics

Even within the software engineering context, there is hardly any consensus as
to what measure, measurement, or metrics truly means. Discord is good, as it
usually signifies independent thinking. Pressman (2000) says “a measure pro-
vides a quantitative indication of the extent, amount, dimension, capacity, or
size of some attribute of a product or process” and “measurement is the act of
determining a measure.” The IEEE (1990) Software Engineering Standards
define metric as “…a quantitative measure of the degree to which a system,
component, or process possesses a given attribute.” In this book, whenever we
talk about metrics, we take it to cover the entire gamut of measure, measure-
ments, and metrics. We will concern ourselves more with the utility of a metrics-
driven approach to enterprise software development and less with its pedagogi-
cal aspects. The chapters in Part 1 are devoted to a general review of metrics
in software engineering, as well as some key themes in software measurements.
We now take a passing glance at how metrics relate to our lives.

Nothing is truer than Mah and Putnum’s words: “We manage things ‘by the
numbers’ in many aspects of our lives.…These numbers give us insight and help
steer our actions” (Pressman 2000). Inflation rate indicates the state of an
economy, blood cholesterol level signifies the state of one’s heart, and money
is a measure of one’s station in life. All three of these work on certain assump-
tions. Inflation takes into account only a “basket” of goods and services, cho-
lesterol level is just one among many factors that make or break a heart, and
money cannot buy happiness. Yet policies are based on the inflation rate, care
goes into keeping cholesterol in check, and the pursuit of money is deemed a
worthy endeavor. Thus the assumptions behind these metrics, though certainly
not sweepingly true, are apt enough under certain situations. These are just some
of the metrics which guide decisions on national, societal, and personal levels.
Metrics give us some numbers upon which we base the branching logic of our
decision trees. While it is important to remain mindful of the limitations the
assumptions of every metric place upon it, it is equally important to understand
that metrics can and do help traverse the maze of complex decision making in
our lives.



Schmoozing with the Ideas 19

Decision making is an intriguing process, tied closely as it is to the very
functioning of the human mind. Decisions come out of a chemistry of obser-
vation and perception, facts and hunches, objectivity and subjectivity. Use of
metrics streamlines the decision-making process to a large extent, clearly de-
lineating the subjective and the objective aspects and their interfaces. In this
book, it will be illustrated how metrics help us make expedient choices in the
software development process. I always find it easy and useful to view metrics
as some kind of heuristic. This brings us to the next important idea of this book.

2.3.5. Heuristics

Maier and Rechtin (2000), in the second edition of their seminal work The Art
of Systems Architecting, treat heuristics as “abstractions of experience.” The
word “heuristics” certainly has a Greek origin, but different authors give dif-
ferent shades to its original meaning. Maier and Rechtin (2000) say the Greek
word heuriskein means to “‘find a way’ or ‘to guide’ in the sense of piloting
a boat through treacherous shoals.” According to Luger (2004), the original
word means “to discover.” Luger offers a down-to-earth take on a heuristic as
“a useful, but potentially fallible problem-solving strategy…” and adds that
“much of what we commonly call intelligence seems to reside in the heuristics
used by humans to solve problems.” According to Polya (1945), in his classic
How to Solve It: A New Aspect of Mathematical Method: “Heuristic, as an
adjective, means ‘serving to discover’…The aim of heuristic is to study the
methods and rules of discovery and invention.”

Cutting through these thickets of definitions, the notion of a heuristic is
familiar to many of us. To cite some of the instances mentioned by Luger
(2004), checking to see if an appliance is plugged in before complaining that
it does not work is a heuristic, as is the strategy of “castling” in chess to fortify
your king. Doctors and car mechanics use heuristics all the time. Nausea and
stomach pain? Likely diagnosis: food poisoning. Too much smoke and low gas
mileage? The car may be due for an engine tune-up. Every professional has his
or her own bag of heuristics, which are refined and expanded with experience.
We are also taught many heuristics in school. The sum of the angles of a triangle
is 180 degrees is one of the earliest and most widely used heuristics in geometry.
It helps in the deduction of many clever things about a triangle, given speci-
fication of some of its sides and angles. Many of the heuristics we use in getting
through an average day at home, work, or school are so ingrained in our
education, culture, or just general awareness that we hardly notice the ways they
make us smarter, helping us avoid past mistakes and make better judgments.
In fact, in our everyday lives, much of what is feted as sterling “common sense”



20 Metrics-Driven Enterprise Software Development

is actually a subconscious collection of heuristics interlinked and annotated for
quick recall and application.

But heuristics are not eternal truths. Luger’s comment on their potential
fallibility is significant. Many a time a doctor’s or car mechanic’s diagnosis
goes wrong (in spite of their most sincere efforts): nausea and stomach pain may
not just be food poisoning, malodorous smoke and low gas mileage may be due
to the demise of one or more engine cylinder, and the angles of a triangle will
not add up to 180 degrees if the triangle is described on the surface of a sphere.
Thus heuristics come with certain assumptions about scope and context, and one
needs to remember these when using heuristics.

In spite of this fallibility, the state of heuristics indicates a discipline’s
maturity. Maier and Rechtin (2000) give a list of “heuristics for systems-level
architecting” in their book, classifying each heuristic as prescriptive or descrip-
tive. Culled from the literature and the authors’ own research, almost all are very
pithy and some quaintly aphoristic: “Success is defined by the beholder, not by
the architect”; “one person’s architecture is another person’s detail”; “if you
can’t analyze it, don’t build it”; and so on. Polya (1945) devotes more than
three-quarters of his book to what he calls the “Short Dictionary of Heuristic,”
which contains sections such as “Can You Derive the Result Differently?,”
“Decomposing and Recombining,” and “Have You Seen It Before?” Both works,
set apart by half a century and different disciplines, share the commonality of
purpose in compiling a set of useful heuristics for practitioners.

Heuristics closely relate to something of a more homely name: rules of
thumb. In my area of undergraduate study, electrical engineering, we had
Fleming’s left and right hand rules, where the thumb really entered into the
rules. In general, rules of thumb are quick and easy judgment aids (although
the thinking that went into them might have been neither quick nor easy) that
can be widely applied. In his The Timeless Way of Building, Alexander (1979)
explains how design involves calling forth rules of thumb gathered through
experience and practice. He goes on to add that “…each one of us, no matter
how humble, or how elevated, has a vast fabric of rules of thumb, in our minds,
which tell us what to do when it comes time to act.”

Sets of time-tested heuristics or rules of thumb are still evolving for software
engineering. Metrics can go a long way in enriching this body of common
knowledge. The formulation of a metric encapsulates much reflection, aware-
ness, and experience. Applying it in a given scenario lets us leverage the back-
ground wisdom without going through the motions again. A good metric goes
much beyond being just a number; it becomes a heuristic for guiding software
development through the “treacherous shoals” of changing user requirements,
technological and business constraints, and ever-gnawing competition.



Schmoozing with the Ideas 21

In this book, we will build some metrics and show how they can be applied.
The thrust of the discussion will be toward distilling the scope and aptitude of
the metrics into heuristics. The heuristics should be useful even without the
scaffolding of metrics derivation.

But for any metric, heuristic, or rule of thumb to work for the better, one
needs a closed-loop system, that is, a system with feedback.

2.3.6. Feedback

Feedback is one of the most fundamental techniques of engineering. Like all
fundamental techniques, it goes beyond a discipline and spreads across life.
Feedback is one of those tenets that seems to work because it is so intuitive
and seems so intuitive because it works. In the simplest of terms, feedback is
a mechanism for controlling an activity by regulating the input based on the
output.

Feedback is nearly everywhere. We use it all the time, often without real-
izing it. Pressing on the accelerator increases the speed of a car: the visual
perception of the car’s speed is processed back to the foot, to modify the
pressure and control the speed. If you are hungry after a hard day, you ingest
food rapidly and in large servings, but nearing the level of satiety, the quantity
and celerity of intake go down until you stop altogether. This happens as signals
from the stomach go back to the brain, which controls the hand that feeds the
mouth. Autopilot systems on aircraft monitor altitude and other parameters and
feed them back to the system to generate required levels of thrust to maintain
the plane on an even keel. As mentioned earlier, often the phrase “closed-loop
system” is used to denote a system which has a feedback path from the output
to the input. A comparator mechanism gauges the actual output vis-à-vis the
desired output and adjusts the input accordingly. Success of a feedback mecha-
nism hinges on a few key factors. We must be able to measure the input and
output and have a clear notion of what the output needs to be. Feedback tech-
niques are not yet sufficiently mature in enterprise software development. Metrics
can play a crucial role in harnessing this classic engineering stratagem in soft-
ware building.

But do software development processes allow for feedback loops? Not all
do, but the iterative and incremental development model does.

2.3.7. Iterative and Incremental Development

Larman and Basili (2003), in their paper “Iterative and Incremental Develop-
ment: A Brief History,” highlight how the roots of iterative and incremental



22 Metrics-Driven Enterprise Software Development

development (or IID, as the authors abbreviate it, true to software’s acronymic
culture) go far deeper and are older than the recent interest in “agile” methods.
Among the most interesting insights, we learn how Royce’s (1987) article titled
“Managing the Development of Large Software Systems,” widely considered
to be the waterfall manifesto, in fact contains germs of iterative and incremental
development. “If the computer program in question is being developed for the
first time, arrange matters so that the version finally delivered to the customer
is actually the second version insofar as critical design/operations areas are
concerned” (italics added). How close in spirit this advice is to Brooks’s (1995)
credo — “Plan to throw one away; you will, anyhow” — which Raymond
(2001), in his classic essay The Cathedral and the Bazaar, explains as “…you
don’t really understand the problem until after the first time you implement a
solution.…So if you want to get it right, be ready to start over at least once.
Brooks (2000), in his keynote speech at the 1995 International Conference on
Software Engineering, declared: “The waterfall model is wrong!” In his 2000
Turing lecture “The Design of Design,” Brooks (2000) goes a step further and
titles one of his slides “The Waterfall Model Is Dead Wrong”!

Instead of being too judgmental, I have found that it helps to regard both
the waterfall and the iterative and incremental approaches to software develop-
ment as being complementary in a subtle and useful manner. What goes on
inside an iteration is often not very different from the waterfall tenets. The acts
of analyzing, designing, building, and testing a software system must have an
element of sequential linearity; one cannot analyze after testing (although test-
ing before building, or at least thinking and talking about testing before build-
ing, is recommended in some circles). The most marked departure of the itera-
tive and incremental worldview from the waterfall is the recognition of the
inherently evolutionary nature of software. Gilb (1977), in his book Software
Metrics (arguably the first book on software metrics and undoubtedly the first
juxtaposition of “software” with “metrics,” thus coining the phrase), was ba-
sically promoting iterative and incremental development when he talked about
how complex systems have a better chance of success when implemented in
“small steps,” each step having a “clear measure of successful achievement as
well as a ‘retreat’ possibility to a previous successful step upon failure.” He also
underlined the scope of receiving “feedback from the real world” and how this
helps better allocation of resources and correction of errors. Retreat and feed-
back are the key concepts in iterative and incremental development.

As Campbell (1984) observed in his Grammatical Man — a book which
brilliantly matches depth, width, and concision — evolution in the natural
world, contrary to popular belief, is far from a unidirectional ascent from lower
to higher forms of life. The path is replete with false starts, cul-de-sacs, peaks,
and plateaus. An ineluctable feedback mechanism is continuously at play, mod-



Schmoozing with the Ideas 23

erating the journey through countless repeats and revisits toward deeper levels
of perfection. The iterative and incremental model takes its lesson from these
evolutionary trends.

Very interestingly, the co-evolution model (Brooks 2000) seeks to establish
how the evolution of the problem space is influenced by the evolution of the
solution space. Among the key benefits of the iterative and incremental model
is that it allows for the inevitable changes in the problem domain and helps tune
the solution domain to the latest realities of the problem.

Chapter 6, the first chapter in Part 2, is devoted to discussion of the dynam-
ics of the iterative and incremental model in detail. The techniques presented
in this book are all geared toward facilitating feedback and hence applicable
when software is built iteratively and incrementally. Although iterative and
incremental development is hard to understand and harder to apply (it takes
more than one iteration to get used to, believe me!), it remains the most ex-
pedient software development philosophy. We will have many occasions to
explore its innards in this book.

Iterative and incremental development as a process works so well for soft-
ware even as it is absurd in other conventional engineering disciplines. The
reasons lie in the peculiarities of software as an industrial artifact, some of
which are described in Chapter 3. Information technology, or IT, is ITerative,
and the industry has more or less awakened to this truth. Yet much confusion
still lurks regarding the place of processes in the software sun. Why and where
does software development need processes?

2.3.8. Process

A process is a set of predefined and coordinated activities prescribed to prac-
titioners — in teams or individually — with the intention of fulfilling an ob-
jective. The second edition of The Unified Modeling Language User Reference
defines a software development process simply “as the steps and guidelines by
which to develop a system” (Rumbaugh et al. 2005). More specifically, a
software development process has been called “the set of activities needed to
transform a user’s requirements into a software system” (Jacobson et al. 1999).
Processes ensure consistent levels of quality and repeatability in any industrial
production. Awaking to the need for processes in enterprise software production
marks a milestone. It comes with the crucial recognition of software as a product
of engineering, bound by the usual demands of reliability, consistency, safety,
and usability that set apart good engineering from bad. It is good that “process”
in software engineering has come to have overtones related to discipline, qual-
ity, and such salutary traits. References to “process-driven approaches” nowa-
days are often taken to mean ways of doing things that are not just ad hoc or



24 Metrics-Driven Enterprise Software Development

instinctive but include time-tested techniques and the wisdom from past suc-
cesses and failures. When process is mentioned in this book, we are talking
about some standardized way of doing some software development activity.

Processes are great things. They allow for teams of practitioners with very
different preparation and perception (or even political views!) to work together
and produce consistent results. They allow for smart integration of technology
and human skills toward the generation of superior software. But processes are
not everything. There are certain areas — and in many of these lies much that
is enchanting in software development — where processes cannot help and
may also hinder. In the 2000 Turing Award Lecture, Brooks (2000) makes the
compelling point that great designs come not from processes but from great
designers. And where do great designers come from? Brooks says great design-
ers need to be grown deliberately and managed imaginatively. He adds another
sly and sapient slant: “We have to protect them [great designers] fiercely.” The
next bullet reads: “From managers.” And the next: “From managing.” The
message comes through loud and clear. The most reflective and thoughtful
activities of software development need undistracted efforts of the mind. Pro-
cesses cannot give us great ideas, but they can guide us as to how best to use
a great idea or make the best of a not-so-great idea. Processes can help turn
ideas into ubiquitous utility — so ubiquitous and so utilitarian that we no
longer wonder about them, like the lightbulb, air travel, or even the Web. We
make best use of processes when we are sensitive to both their strengths and
limitations.

Practitioners in the enterprise software development business often love and
hate processes at the same time. It is charming to see processes align a diverse
set of individuals and technology toward a common goal. It is equally madden-
ing to share the frustration and angst of going over the facile motions of process
for the sake of process. I am increasingly led to believe that, just like antipatterns,
there may be antiprocesses, sets of activities which never should have been
processized to begin with. In general, metrics play an important role in iden-
tifying the facility or fatuity of processes.

Software engineering processes are sometimes prone to what I call the
“unicorn effect”; it is easy to get very excited about great processes without ever
getting to see one. This is a dangerous circumstance for enterprise software
development. To ensure this does not happen, artifacts come in handy.

2.3.9. Artifacts

Kruchten (2004), in his book The Rational Unified Process: An Introduction,
calls an artifact “a piece of information that is produced, modified or used by



Schmoozing with the Ideas 25

a process.” An artifact usually manifests as a textual or pictorial record of the
output of one or a set of related tasks mandated by a process. The word has
an artistic ring to it; in fact, it derives from the Latin arte by skill (ablative of
art-, ars skill) + factum, neuter of factus, past participle of facere to do (Merriam-
Webster 2006). Artifacts are produced when the skill of extraneous (as human)
agency is applied to environmental ingredients. The brilliant Altamira cave
paintings (most memorably the charging bison) created by predecessors to modern
man, whose drawing skills used the ingredients around them (the cave walls,
the color pigments, maybe some flesh-and-blood inspiration bison), are cer-
tainly artifacts on one level. (The artifact product has far outlived the process
which was used to arrive at it, and herein lies its triumph; processes are only
remembered when something went wrong with them.) On another level, a piece
of software design — boxes and lines scribbled on the back of an envelope or
a sequence diagram with all annotations — is also an artifact. It creates a new
way of thinking, gleaning new information from existing information such as
user needs and technological and business constraints. Artifacts are easily
confused with documents. All artifacts need to be documented if they are to be
preserved for review and reuse, but artifacts are ultimately the thinking that goes
behind the mere recording.

There are conflicting views on whether code qualifies as an artifact. In my
opinion, it does. Code is essentially new information created from the synergy
of all the factors affecting software development. In fact, code is by far the most
flexible — in terms of both structure and function — artifact that the software
development life cycle produces. The techniques described in this book will
lead to the recording of new information such as metrics data or classification
of entities; these are all artifacts.

2.4. THREADS AND BRAIDS

In the last section, we reflected on the major ideas of this book and saw how
one leads to another. Some aspects of interplay of these ideas must already be
clear. How this book tries to bring together the threads in a braid is discussed
next.

As mentioned earlier, the harmony of different, even seemingly contrasting
ideas has been illustrated to great effect in Hofstadter’s book Gödel, Escher,
Bach: An Eternal Golden Braid. Hofstadter (1979) says: “I realized that to me,
Gödel and Escher and Bach were only shadows cast in different directions by
some central solid essence. I tried to reconstruct the central object, and came
up with this book.” The book is a significant work and deals with issues deep



26 Metrics-Driven Enterprise Software Development

and resonant. I borrow the construct of a braid to underline the intermingling
of the ideas in this book.

Enterprise software systems are the field of our interest. We are not focusing
on software that is built for instructional purposes (such as classroom projects),
for highly specific scientific computing, or for mere pleasure. Some of our
discussions may be pertinent to such types of software families, but they cer-
tainly are not our main concern. Enterprise software systems have stakeholders
associated with them, usually several different groups. Practitioners are a spe-
cial class of stakeholders; the practice of their profession involves building
enterprise software systems and resolving the (often conflicting) stakeholders’
demands from the system. We seek to establish how metrics can help practi-
tioners do their job better; we take “metrics” to cover the whole gamut of
measure, measurements, and metrics. The application and interpretation of metrics
lead to more general and intuitive heuristics — rules of thumb which allow
practitioners to make informed judgments as they go about enterprise software
development. Metrics and heuristics facilitate feedback in the development
process, a crucial factor in ensuring the solution stays aligned to the ever-
evolving problem. The iterative and incremental development model has built-
in feedback mechanisms which use inputs from the real world (user responses)
to better tune the objective and course of development. Iterative and incremental
development is a particular kind of process, a set of guidelines for the construc-
tion, delivery, and maintenance of software systems. Artifacts are outputs from
processes; they embody the information that is produced, modified, or con-
sumed by process activities. Some of the methods in this book call for a special
way of arranging and interpreting information from the development activities;
we also call such products artifacts.

This interplay of these ideas has strongly influenced the organization of the
book (Figure 2.1) and the suggested reading plan in Chapter 1.

2.5. SUMMARY

This chapter reflected on the significant ideas permeating this book and their
interactions. As we go deeper, we will discover more related concepts and other
interesting ways how all of these play with one another. Some of these ideas
are actually collections of ideas; they are grouped together so that they can be
referred to easily later, to explain, refine, or dissect further.

We are now ready to get into the meat of our matter. Let us proceed to Part
1; the next chapter gives an overview of the place of metrics in software
engineering.



Schmoozing with the Ideas 27

REFERENCES

Alexander, C. (1979). The Timeless Way of Building. Oxford University Press.
Barabasi, A.-L. (2001). The Physics of the Web. http://physicsweb.org/articles/world/

14/7/9.
Berners-Lee, T. (1999). Weaving the Web: The Original Design and Ultimate Destiny

of the World Wide Web by Its Inventor. Harper San Francisco.
Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, 20th

Anniversary Edition. Addison-Wesley.
Brooks, F. P. (2000). The Design of Design, A. M. Turing Award Lecture. http://

www.siggraph.org/s2000/conference/turing/index.html.
Campbell, J. (1984). Grammatical Man: Information, Entropy, Language and Life; The

Story of the Modern Revolution in Human Thought. Penguin Books.
Cornell, E. and Wieman, C. (1995). BEC home page. http://www.colorado.edu/physics/

2000/bec/.
Fowler, M. (2003). Patterns of Enterprise Application Architecture. Addison-Wesley.
Gilb, T. (1977). Software Metrics. Winthrop Publishers.

Figure 2.1. Interplay of ideas and organization of this book

Part 1: Context 

Part 2: Constructs 

Enterprise Software

Heuristics Feedback Iter. & Incr. Dev Process Artifacts

Stakeholders

Practitioners Metrics

Part 3: Case Study



28 Metrics-Driven Enterprise Software Development

Hofstadter, D. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. Harper San
Francisco.

IEEE (1990). IEEE Software Engineering Standards, Standard 610.12-1990, pp. 47–48.
standards.ieee.org/software/.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development
Process. Addison-Wesley.

Johnson, R. C. (2000). Time to Engineer DNA Computers. http://www.nature.com/
embor/journal/v4/n1/full/embor719.html.

Kruchten, P. (2004). The Rational Unified Process: An Introduction, 3rd ed. Addison-
Wesley.

Larman, C. and Basili, V. R. (2003). Iterative and incremental development: A brief
history. Computer, 36(6):47–56.

Luger, G. F. (2004). Artificial Intelligence: Structures and Strategies for Complex Problem
Solving, 5th ed. Addison-Wesley.

Maier, M. W. and Rechtin, E. (2000). The Art of Systems Architecting, 2nd ed. CRC
Press.

Merriam-Webster (2006). Merriam-Webster Online Dictionary. http://www.m-w.com.
Parker, J. (2003). Computing with DNA. http://www.nature.com/embor/journal/v4/n1/

full/embor719.html.
Polya, G. (1945). How to Solve It: A New Aspect of Mathematical Method. Princeton

University Press.
Pressman, R. S. (2000). Software Engineering: A Practitioner’s Approach. McGraw-

Hill.
Raymond, E. S. (2001). The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Reilly.
Royce, W. W. (1987). Managing the development of large software systems: Concepts

and techniques. In ICSE ’87: Proceedings of the 9th International Conference on
Software Engineering, pp. 328–338. IEEE Computer Society Press.

Rumbaugh, J., Jacobson, I., and Booch, G. (2005). The Unified Modeling Language
User Reference, 2nd ed. Addison-Wesley.

Turing, A. (1936). On Computable Numbers, with an Application to the
Entscheidungsproblem. http://web.comlab.ox.ac.uk/oucl/research/areas/ieg/e-library/
sources/tp2-ie.pdf.


